Coming to Statistica  
in 2013/2014

Online Tutoring 

Video Solutions

Phone/iPad apps

Group Classes

Interactive Webinars

Blog

Guestbook

Please contact Statistica
with questions or comments.
 © Copyright 2013  Statistica
 All rights reserved
.

BuiltWithNOF
negatives

Mathematics & Statistic Tutor Perth - SPSS Help   

Statistics
Contact us
Services
School
Parents

Adding and subtracting negative numbers
 

I will just give simple examples using a vertical number line. 

    Moving upwards is adding
    Moving downwards is subtracting

Example One:     2  - 3   

     So start at 2 and move down 3

      5                               
      4                               
      3
      2                                 Start
      1                                 One place
      0                                 Two places
      -1                               Three places  End          So the answer is -1
      -2
      -3
      -4
      -5

Example Two:     - -

     So start at - 2  and move down 3

      5                               
      4                               
      3
      2                              
      1                                
      0                        
      -1                              
      -2                               
      Start
      -3
                                    One place                        
      -4
                                     Two places
      -5                               Three places  End      
      So the answer is -5

       

Example Three:   - 4  + 3 

     So start at - 4 and move up 3

      5                               
      4                               
      3
      2                              
      1                                
      0                        
      -1                                Three places  End       So the answer is -1
      -2                               
      Two places
      -3
                                    One place            
      -4
                                       Start
      -5                              

Back to quadratics Example Three

 

 

 

 

Notice when multiplying with negative numbers

Negative times Negative makes Positive      5     x    5        =   + 25
Positive times Positive makes Positive        
+ 5    
+ 5         =  +  25
Positive times Negative makes Negative     
5    
x   + 5         =  -  25

Back to quadratics Example One

Back to quadratics Example Three

 

 

 

 

 Factors

 A factor is a number which divides equally into another number. This then leads you to two numbers that multiply together to give you the original number.

How do you find the factors of a number? There are a few ways so we will work through an example:

      Finding the factors of 48.

      First divide by 2 until you do not get a whole number as answer,
      Then divide by 3 until you do not get a whole number as answer,
      Then divide by 5 until you do not get a whole number as answer,
      Then divide by 7 until you do not get a whole number as answer,
      Then divide by the next prime number etc until you get the answer one.

          2 | 48
             2 |24
             
             2 |12
                  
          2 |6
                      
          3|3
                          
          1|1

So now we know that 2  xxxx 3 x 1 = 48, now we just take the numbers in different groups

for example: 4    x  (2  xx 3 x 1 ) = x 2  xxx 3 x 1

x   (2  xxxx 3)     2    x  (2  xxx 3 x 1)    

4    x  (2  xx 3 x 1 )            8   x  (2  x 3 x 1)                    16   x  (3 x 1 )

So we get the list of numbers that multiply to get 48 are:

x   48,     2    x  24,    4    x  12,      8   x  6,     16   x  3,

Another way is starting with 1 then 2 then 3 and so on finding whole numbers that multiply to give the original number noting the whole number answers as a pair.  Stop when one of the numbers is already in a pair.

So using 48 again

1 times 48 is 48 so the first pair is       (1  x  48),
2 times 24 is 48 so the second pair is   (2 
x  24),
3 times 16 is 48  so the third pair is     (3
x  16),
4 times 12 is 48  so the fourth pair is   (4 
x  12),
5 times there is no whole number, therefore no pair
6 times 8 is 48  so the fifth pair is       (6 
x  8)
7 times there is no whole number, therefore no pair
8 times 6 is 48  we have 6 again which was in our fifth pair so we can stop.

 

x   48,     2    x  24,    4    x  12,      8   x  6,     16   x  3,

Back to quadratics

 

I am never going to use Mathematics
in my job,
why am I learning it?

Read this latest research and you will be surprised
which jobs require
the most Mathematics

[Home] [Parents] [Contact us] [Services] [Mathematics] [Statistics] [School]